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The propagation of a liquid-filled crack from an over-pressured source into a semi-
infinite uniform elastic solid is studied. The fluid is lighter than the solid and
propagates due to its buoyancy and to the source over-pressure. The role of this over-
pressure at early and late times is considered and it is found that the combination of
buoyancy and over-pressure leads to significantly different behaviour from buoyancy
or over-pressure alone. Lubrication theory is used to describe the flow, where the
pressure in the fluid is determined by the elastic deformation of the solid due to the
presence of the crack. Numerical results for the evolution of the crack shape and
speed are obtained. The crack grows exponentially at early times, but at later times,
when buoyancy becomes important, the crack growth accelerates towards a finite-time
blow-up. These results are explained by asymptotic similarity solutions for early and
late times. The predictions of these solutions are in close agreement with the full
numerical results. A different case of crack geometry is also considered in order to
highlight connections with previous work. The geological application to magma-filled
cracks in the Earth’s crust, or dykes, is discussed.

1. Introduction
The transport of magma from deep regions in the Earth to shallower regions occurs

through several mechanisms. In the mantle, magma is formed when the solid rock
partially melts. This melting can occur by an increase in the temperature, but more
commonly by a decrease in the pressure due to mantle upwelling or by a change in
the composition due to a flux of volatiles such as water. The magma is less dense than
the parent rock and percolates up through the matrix of unmolten minerals, driven
by its buoyancy. It collects into veins and then pools in reservoirs at the base of the
crust. These magma chambers can be kilometres in size. Evidence for the presence
of magma chambers deep in the Earth comes from inverting seismic signals to show
regions of lower velocity, indicating the presence of melt.

Differential stress caused by the buoyancy and pressure of the melt and local
tectonic stresses causes cracks to open and propagate from the chamber. The cracks
are called dykes when they intrude in a vertical plane and sills when they intrude
in a horizontal plane. The propagation of dykes corresponds to a flux of mass and
heat from the mantle to and through the crust, which has a significant effect on the
evolution of the Earth’s crust, as well as contributing to the Earth’s surface volcanism.
The dramatic ‘curtains of fire’ seen in places like Hawaii and Iceland are examples
of dykes breaking through the Earth’s surface. Dykes solidify as they cool on a
time scale of days, and may be exposed millions of years later as the surrounding
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rock is eroded over time. An excellent review by Rubin (1995b) covers the geological
background to the problem of dyke propagation and describes the main physical
features of dykes, in particular that they are near-planar sheets of magma propagating
a fracture in the regime of linear elastic fracture mechanics, away from a reservoir of
magma.

Various solutions for fluid-driven fracture have been derived in previous work.
Weertman (1971) demonstrated that a sufficiently large buoyant fluid-filled crack
would begin to propagate upwards but did not calculate the effects of viscous flow in
the crack. Spence & Sharp (1985) obtained similarity solutions for a fluid-driven crack
that propagates symmetrically in an infinite solid from an over-pressured source, but
without buoyancy. They specified the flux of fluid into the crack, and found that for
fluxes with a power-law time-dependence the pressure at the origin also has power-
law time-dependence, while for fluxes with an exponential time-dependence the over-
pressure at the source (in the centre of the symmetric crack) remains constant. This
conclusion can be inverted so that a specified constant over-pressure at the source
will imply exponential crack growth in the absence of buoyancy. Lister (1990b) and
Spence, Sharp & Turcotte (1987) considered the effect of buoyancy on a crack which
propagates fed by a constant flux of fluid. They found travelling-wave solutions in
which the flux of fluid into the crack is an input parameter that sets the propagation
speed. The shape of the crack can be divided into a bulbous head, in which buoyancy
and elastic pressure are both important, and a constant-width tail, where the over-
pressure decays with distance from the crack tip and the flow is simply driven by
buoyancy. In geological applications it seems more appropriate to specify the source
over-pressure instead of the flux.

Mériaux & Jaupart (1998) considered propagation driven by buoyancy and a speci-
fied over-pressure through an elastic plate of finite thickness and found numerical
solutions for the crack opening and speed. Their numerical solutions showed that the
crack widened continually at its base and developed a head-and-tail structure, thus
showing an amalgam of the features of the solutions of Spence & Sharp (1985) and
Lister (1990b). It was not clear how much of this behaviour should be attributed to
the decreasing rigidity of the plate as the crack approached the upper surface. The
propagation of a liquid-filled crack with buoyancy and over-pressure has also been
the subject of recent experiments by Menand & Tait (2002). They these considered
fractures in gelatin, driven by water from a reservoir at constant pressure beneath the
gelatin. Although their experiments involved fully three-dimensional cracks with a
finite lateral extent, they also comment on the development of a bulbous head fed by
a narrow tail. They developed scaling arguments for their results and noted that the
experimental parameters were such that the rate of propagation was controlled by the
strength of the gelatin rather than the viscosity of the fluid. Other experimental studies
in gelatin have incorporated such effects as interaction between multiple fractures
(Ito & Martel 2002) and the focusing of fracture paths by external loading (Muller,
Ito & Martel 2001). Other features of magma-driven propagation, such as the exis-
tence of vapour at the crack tip (Lister 1990b; Garagash & Detournay 1998), the
solidification of magma as it cools (Lister 1994a, b; Rubin 1995a; Bolchover &
Lister 1999), non-Newtonian rheology (Adachi & Detournay 2002) and dyke ascent
through partially molten rock (Rubin 1998), have been also studied. A related body
of literature concerns hydro-fracture (e.g. Perkins & Kern 1961; Nordgren 1972;
Geertsma & Haafkens 1979; Huang, Szewczyk & Li 1990; Atkinson & Thiercelin
1993) which is of great interest to the oil industry, particularly when the porous
nature of the rock is taken into account (e.g. Atkinson & Craster 1991).
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Figure 1. Definition sketch. The width of the crack has been exagerated for clarity.

The case of a crack propagating under the influence of both buoyancy and over-
pressure in an infinite impermeable solid has not been considered analytically, as
pointed out in Rubin (1995b). In this paper we consider such propagation, first deriving
the governing equations in § 2, then developing scaling arguments in § 3 which we use
both to simplify the equations and to inform a numerical study of the solutions in § 4.
We then explain the features of the solutions using asymptotic similarity solutions in
§ 5 and § 6, and finally discuss the relevance of the results in § 7.

2. Formulation of the problem
Consider a two-dimensional crack propagating into a semi-infinite uniform elastic

solid occupying z � 0 from a reservoir of fluid occupying z < 0, where z is the vertical
coordinate, as shown in figure 1. The plane of the crack is assumed to be vertical. Let
the solid have density ρ, shear modulus G and Poisson’s ratio ν, and define an elastic
modulus m = G/ (1 − ν). Let the half-width of the crack be h(z, t), 0 < z < zn(t),
where the crack tip is at z = zn(t). Let the crack be filled with viscous fluid of density
ρ − �ρ and viscosity µ, so that the fluid is driven upwards by buoyancy �ρg, with
gravity g acting downwards. We also assume that the pressure at the top of the
reservoir is �P greater than the horizontal stress in the solid just above the reservoir.

2.1. Fluid mechanics

The flow of viscous fluid in the crack is driven by the gradient of the fluid pressure
p(z) and by buoyancy �ρg. The pressure p(z) is equal to the sum of the ambient stress
in the solid prior to crack propagation and the elastic stress due to the deformation
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of the crack walls. The aspect ratio of a crack, width to length, is given in order of
magnitude by the ratio of typical elastic over-pressures to the elastic modulus of the
solid, see § 3. In the Earth this gives dykes with aspect ratios in the range 10−2–10−4,
which is to say that the cracks are long and thin.

The long thin geometry of the fluid flow, together with the high viscosity of magma,
means that the flow in the crack is described well by lubrication theory provided that
the modified Reynolds number is small. If this condition is satisfied then the flux of
fluid in the crack is given by

q = −2h3

3µ

(
∂p

∂z
+ (ρ − �ρ) g

)
. (2.1)

With the equation of continuity, ∇ · u = 0, (2.1) yields the usual Reynolds equation

∂ (2h)

∂t
= −∂q

∂z
=

2

3µ

∂

∂z

(
h3

(
∂p

∂z
+ (ρ − �ρ) g

))
(2.2)

to describe the evolution of the width of the crack.
The fluid pressure is given by p = pe −σxx, where pe(z) is the pressure due to elastic

deformation by the presence of the crack and σxx is the ambient horizontal stress in the
solid prior to crack propagation. The ambient stress σxx is given by σxx = ρgz + �σ

(Rubin 1995b), where �σ is the deviation from lithostatic stress due to regional
tectonic deformation. Some tectonic stress �σ is usually needed to initiate the crack
and determine the plane of propagation. For simplicity we assume that �σ is linear
in the vertical coordinate z so that it can be absorbed into an apparent, or modified,
solid density defined by ρg = dσxx/ dz. The Reynolds equation (2.2) then becomes

∂h

∂t
=

1

3µ

∂

∂z

(
h3

(
∂pe

∂z
− �ρg

))
. (2.3)

A boundary condition is imposed at the tip of the crack to ensure that there is no
source or sink of mass there. Balancing fluxes, q = hżn, gives

3µżn = − lim
z→zn

h2 ∂pe

∂z
(2.4)

where h → 0 and ∂pe/∂z → −∞ are evaluated at the crack tip.
The boundary condition at the base of the crack, z = 0, is that the source over-

pressure is �P larger than the stress in the solid just above the source. Thus

pe(0) = �P. (2.5)

2.2. Solid mechanics

Provided the displacement gradients are small, ∂h/∂z � 1, we may use linear elasticity
to describe the solid mechanics. As expected from a linear theory of elasticity, the
elastic pressure is a linear functional of the crack opening. The elastic pressure pe(z)
can be related to the crack half-width h via a Hilbert-like transform

pe(z) = −m

π

∫
L

∂h

∂s
k(s, z) ds (2.6)

using, for example, a Green’s function approach or complex-variable methods. The
kernel, k(s, z), in (2.6) depends on the crack geometry and the boundary conditions
on the solid; L is the crack domain.



Buoyancy-driven crack propagation from an over-pressured source 83

Spence & Sharp (1985) used

kSS(s, z) =
1

s − z
+

1

s + z
, (2.7)

which describes a symmetric crack in an infinite solid. Since the Green’s function
solution for a point dislocation at s (i.e. a point discontinuity in the displacement
field) is 1/ (s − z), we can interpret kSS as the sum of a point dislocation at s and
another at −s, appropriate to the symmetry.

For the case where the crack propagates into a half-space away from a fluid
reservoir so that the boundary of the solid is traction-free, the relevant kernel is

kT F (s, z) =
1

s − z
− s2 − 4sz − z2

(s + z)3

=
1

s − z
− 1

s + z
+

6z

(s + z)2
− 4z2

(s + z)3
(2.8)

(Broberg 1999, pp. 152–156). In kT F , we have the sum of a dislocation at s, an equal
and opposite dislocation at −s and other terms to make the boundary z = 0 stress
free. This expression is reminiscent of Lorentz’s image system for Stokes flow (Lorentz
1907), reflecting the fact that both the Airy stress function in plane elasticity and the
streamfunction in Stokes flow satisfy the biharmonic equation.

In this paper, we will mainly consider the kernel (2.8) to give the fluid pressure in
(2.6), though we will present some calculations with (2.7) to establish a connection
with the results of Spence & Sharp (1985).

2.3. Fracture mechanics

For slender cracks, linear elasticity predicts a singularity in the stress field ahead of
the crack tip of the form KI/r1/2, where r is the distance from the tip. The coefficient
KI is called the mode-I stress-intensity factor and its magnitude depends on both the
crack opening and the boundary conditions on the solid. The fact that the stress field
near the tip is dominated by this singularity motivates a propagation criterion that
the tip will extend if KI � Kc, where Kc is a material property known as the critical
stress-intensity factor (or fracture toughness). This criterion can also be related to
the conversion of elastic potential energy to new surface energy as the crack extends
(Lawn & Wilshaw 1975). For fluid-driven propagation controlled by the rate of
viscous flow rather than by the wave speed in the solid, the crack propagates in the
marginal state KI = Kc.

The condition that KI = Kc can be rewritten

h ∼ Kc

m

(
2

π
(zn − z)

)1/2

as z → zn−. (2.9)

Equation (2.9) can further be written as an integral constraint on pe(z) for z ∈ L if
the integral relation (2.6) can be inverted.

2.4. Summary

Equations (2.3)–(2.9) describe the propagation of a crack into a half-space from a
reservoir of fluid. We have used lubrication theory (2.3), elasticity (2.6), and fracture
mechanics (2.9). Together with boundary conditions for the tip of the crack (2.4), and
the base of the crack (2.5), these equations constitute an intriguing form of lubrication
problem in which the pressure is non-locally determined by the integral equation (2.6).
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This non-local pressure arises in other problems in fluid-driven fracture and makes
them unlike most lubrication problems in which the fluid pressure is derived from the
local film thickness, interfacial curvature, etc.

3. Scalings and non-dimensionalization
By considering (2.3), we can identify several dynamical regimes through which the

crack passes as it propagates. We assume that the over-pressure remains of size �P

over the length of the crack during propagation. As the crack length zn increases,
the scale �ρgzn of the buoyancy pressure increases, the over-pressure �P remains
constant and the scale of the fracture pressure K/z1/2

n decreases. Hence initially, for

zn � (K/�P )2 the propagation is controlled primarily by resistance to fracture. For
(K/�P )2 � zn � �P/�ρg the propagation is driven primarily by the over-pressure
at the source. Finally, for zn � �P/�ρg the propagation is driven primarily by
buoyancy, but in such a way as to keep the over-pressure constant. This sequence
of propagation regimes assumes that K � �P (�P/�ρg)1/2, so that the fracture-
controlled regime finishes before the buoyancy-controlled regime begins as the crack
length increases. For typical geological parameters (see Lister & Kerr 1991), the
fracture-controlled regime lasts for only order tens of metres, after which we may
neglect the strength of the rock and set Kc = 0. The transition from the regime of over-
pressure-driven propagation to the regime of buoyancy-driven propagation occurs on
a scale of several hundreds of metres to a few kilometres and will be the focus of
our investigation here. We refer to the transition length �P/�ρg as the buoyancy
length.

The constant source over-pressure suggests the scaling pe ∼ �P which, from (2.6),
suggests that h ∼ �Pzn/m. The natural vertical length scale is the buoyancy length
�P/�ρg at which over-pressure and buoyancy are comparable and h ∼ �P 2/�ρgm.
At this length the viscous time scale µz2

n/h2�P estimated from (2.3) is t ∼ µm2/�P 3.
Using these scalings, we define dimensionless variables

P =
pe

�P
, (3.1)

H =
m

�P

h

zn

, (3.2)

Zn =
�ρg

�P
zn, (3.3)

τ =
�P 3

µm2
t. (3.4)

We also map the time-dependent extent of the crack onto the fixed domain [0, 1] by
defining

ζ =
z

zn(t)
. (3.5)

With the scalings (3.1)–(3.5), the governing equations (2.3)–(2.9) become

∂H

∂τ
+

(
H − ζ

∂H

∂ζ

)
1

Zn

dZn

dτ
=

1

3

∂

∂ζ

(
H 3

(
∂P

∂ζ
− Zn

))
, (3.6)

P (ζ ) = − 1

π

∫ 1

0

∂H

∂s
k(s, ζ ) ds, (3.7)
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3

Zn

dZn

dτ
= lim

ζ→1
H 2

(
Zn − ∂P

∂ζ

)
, (3.8)

P (0) = 1, (3.9)

H (1 − ζ )−1/2 → 0 as ζ → 1. (3.10)

Although H → 0 as ζ → 1, we retain the term H 2Zn for notational convenience in
the limit on the right-hand side of (3.8). The extra terms on the left-hand side of (3.6)
arise from the time-dependent scaling of both the vertical coordinate and the crack
half-width with zn(t).

4. Time-dependent calculations
In this section we describe the numerical scheme used to solve (3.6)–(3.10) and

show the results of the time-dependent calculations. The observed behaviour will be
investigated further and asymptotic similarity solutions derived in § 5 and § 6.

4.1. Numerical scheme

We split the domain [0, 1] occupied by the crack into N equal panels and represent H

by a spline through the N values at the mid-points of the panels. The form of spline
chosen is (1 − ζ )1/2 multiplied by a piecewise quadratic function that is continuous
and has continuous derivative. This form was chosen so that the stress-intensity
condition (3.10) can easily be applied. To specify the spline we use the N mid-point
values of H , 2N − 2 continuity conditions at joins between panels and two neutral
conditions on the derivative of the spline at the end points of the interval [0, 1]. The
spline is used to obtain the values of H at the end points of the panels and also
to calculate the pressure at the mid-points from (3.7). The integrals of the quadratic
spline in (3.7) are found analytically.

We note that (3.6) can be written as

∂H

∂τ
= −2H

Zn

dZn

dτ
+

∂

∂ζ

(
1

3
H 3

(
∂P

∂ζ
− Zn

)
+

ζH

Zn

dZn

dτ

)
(4.1)

and define a flux

−Q =
1

3
H 3

(
∂P

∂ζ
− Zn

)
+

ζH

Zn

dZn

dτ
, (4.2)

which we calculate at the end points of the panels. The required end-point values of
∂P/∂ζ are generally obtained using centred differences on the mid-point values of
P . At ζ =0 we use the mid-point values of P for the first two panels together with
the boundary condition P (0) = 1 to calculate ∂P/∂ζ at ζ =0. At ζ =1 the boundary
condition is that there is no source or sink of mass, i.e. Q =0. The time derivative of
H is found using the centred difference

�ζ

(
∂H

∂τ
+

2H

Zn

dZn

dτ

)
= −Q

(
ζ + 1

2
�ζ

)
+ Q

(
ζ − 1

2
�ζ

)
, (4.3)

from which the values of H can be updated using an explicit Euler time step once
the rate of propagation Żn is known. This scheme is second-order accurate in space
and first-order in time. Equation (4.1) has an advective term and a diffusive term
so the usual conditions for stability apply and, on considering the coefficients of
the advective and diffusive terms, it is found necessary to vary the time step with
�τ ∼ 1/Zn.
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Figure 2. Dimensionless length Zn as a function of time τ , for Zn(0) = 10−1 (dotted), Zn(0) =
10−3 (dashed) and Zn(0) = 10−4 (solid). The finite-time blow-up occurs later for smaller values
of Zn(0) but has the same form.

The rate of propagation Żn is determined by the zero stress-intensity condition
(3.10): if the rate of propagation is too fast then the stress intensity will become
negative; if it is too slow then the stress intensity will become positive. The stress
intensity is linear in H , and the updated values of H after one time step are linear in
Żn. Hence the change in stress intensity is linear in Żn. Thus, by time stepping (4.1)
using two trial values of Żn and calculating the stress intensity in each case, we can
calculate the value of Żn that gives zero stress intensity and in this way determine the
correct rate of propagation Żn(τ ). The value of Zn was also updated using an explicit
Euler time step.

As an initial condition, we generally chose a crack length Zn = 10−4 and an initial
profile H = C (1 − ζ )2/3, where C was chosen to give P (0) = 1. The results described
below were obtained with N = 100.

4.2. Numerical results

We commence by examining the rate of propagation. Figure 2 plots the dimensionless
crack length Zn against τ and shows that Zn grows at an ever increasing rate. The
length approaches infinity with a finite-time blow-up at τ = τ ∗, where τ ∗ depends
on the initial conditions. For example, the blow-up time τ ∗ is increased from 14
if Zn(0) = 10−1 to 52 if Zn(0) = 10−3 and to 71 if Zn(0) = 10−4, but it occurs at
approximately the same time interval after Zn(τ ) reaches Zn =1. A logarithmic plot
of the crack speed Żn against length Zn (figure 3) shows that the propagation has two
regimes: for small crack lengths (Zn � 1) the results suggest that Żn ∼ Zn, which gives
exponential growth; for large crack lengths (Zn � 1) the results suggest that Żn ∼ Z2

n,
which gives rise to the observed finite-time blow-up, since integration of Żn = λZ2

n

gives Zn = λ/ (τ ∗ − τ ).
Some insight into the two regimes of propagation is obtained by examining the

shape of the crack (figure 4) and the pressure distribution (figure 5). Recall from (3.2)
and (3.5) that both H and ζ are scaled with zn(t) so that the physical width and
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Figure 3. Logarithmic plot of the propagation rate dZn/ dτ against Zn showing a change of
regime when Zn = O(1). The theoretical predictions for small and large crack lengths (dashed
lines) have slopes 1 and 2 respectively and intercepts given by the detailed analyses in § 5
and § 6.
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Figure 4. (a) Plot of the half-width H against ζ at lengths Zn(τ ) = 10−4, 10−3, 10−2, 10−1, 1,
10, 102, 103 and 104 for Zn(0) = 10−5. (b) The half-width H for Zn = 10−4, 10−3, 10−2 and 10−1

together with the theoretical similarity solution for short crack lengths (dashed).

length are both proportional to Zn(τ ), which increases by orders of magnitude during
the times shown in figure 4.

For early times, when Zn � 1, figure 4(a) suggests that the growth is self-similar,
as the shape H (ζ ) collapses for 10−4 � Zn � 10−2. For these early times the pressure
decreases monotonically from P (0) towards a negative singularity at the crack tip
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Figure 5. (a) Plot of the elastic pressure P against ζ at lengths Zn(τ ) = 10−3, 10−2, 10−1, 1, 10,
102 and 103 for Zn(0) = 10−4. (b) The profiles for Zn = 10−4, 10−2, 10−1 and 1 together with
the theoretical similarity solution for short crack lengths (dashed).
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Figure 6. Logarithmic plot of the maximum pressure in the head Pmax (solid) and its distance
from the tip Zn (1 − ζ (Pmax)) (dotted) against Zn for Zn � 1. Both variables seem to scale

roughly like Z
1/2
n (dashed).

(figure 5b). A self-similar solution for small crack lengths is derived in § 5 using
asymptotic methods to extract the singularity in pressure at the crack tip.

For later times, when Zn � 1, figure 4 suggests that the solution develops a head
region, which occupies a decreasing fraction of the crack’s length but grows in length
when the solution is scaled back to the physical variables, and a tail region. Figure 5(a)
shows that the pressure profile for Zn = 102 and Zn = 103 remains O(1) in the tail
region and has a maximum, which increases with Zn, in the head region. Figure 6
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shows that the maximum pressure and the rescaled distance of the maximum pressure
from the crack tip both behave like Z1/2

n . This suggests that the elastic pressure
gradient in the head is O(1), comparable to buoyancy, as in the solutions derived for
steady propagation in Lister (1990b). A similarity solution for the tail region, which
is matched asymptotically to a solution for the head, is presented in § 6.

5. Early times: crack length � buoyancy length
In section § 4 we noted that in the early stages of propagation, when the crack

length is much less than the buoyancy length (Zn � 1), the crack grows exponentially
and with an approximately constant scaled shape H (ζ ) – suggesting self-similar
behaviour. We now find the appropriate self-similar solution to equations (3.6)–(3.10)
and compare it with the time-dependent calculations. We also make some comparison
with previous solutions in Spence & Sharp (1985).

For Zn � 1 we may neglect the O(1) buoyancy compared with the much larger
O(Z−1

n ) elastic pressure gradient in (3.6). We seek a solution in which Żn = λZn and
∂H/∂τ =0, which seems reasonable from the results of § 4. Under these assumptions
(3.6) and (3.8) become

λ

(
H − ζ

∂H

∂ζ

)
=

1

3

∂

∂ζ

(
H 3 ∂P

∂ζ

)
, (5.1)

3λ = − lim
ζ→1

H 2 ∂P

∂ζ
. (5.2)

We wish to solve for the scaled half-width H , pressure P and propagation rate λ.
We remove the dependence on λ from the equations by rescaling f = Hλ−1/3 and
g = Pλ−1/3 to obtain

f − ζ
df

dζ
=

1

3

d

dζ

(
f 3 dg

dζ

)
, (5.3)

g(ζ ) = − 1

π

∫ 1

0

df

ds
k(s, ζ ) ds, (5.4)

lim
ζ→1

f 2 dg

dζ
= −3, (5.5)

f (1 − ζ )−1/2 → 0 as ζ → 1. (5.6)

The solution to these equations gives the propagation rate from

λ =
1

g(0)3
. (5.7)

Equations (5.3)–(5.6) are solved numerically.
Spence & Sharp (1985) derived equations governing symmetric propagation of

a crack with no buoyancy in an infinite elastic solid, fed by a flux with given
time-dependence. For fluxes of the form Q =Atα and Q =Aeαt equations similar
to (5.3)–(5.6) were obtained, the differences being the numerical coefficients in (5.3)
and the use of the symmetric kernel (2.7) instead of (2.8) in (5.4). Spence & Sharp
(1985) considered propagation for a range of values of α, which led them to derive
similarity solutions in which the critical stress intensity was a function of time. (A
time-dependent critical stress intensity is not physically realistic, and so these solutions
are strictly only relevant in the cases where K = 0.) In particular, the special case
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K =0 was investigated for a flux Q =At , and we use this case as a test to validate
our numerical scheme for the solution of (5.3)–(5.6). We also present results for the
case of a symmetric crack with constant source over-pressure and K = 0, which was
not studied in Spence & Sharp (1985).

5.1. Numerical scheme

Numerical solution for the scaled width f is aided by accounting for the singularities
in f and the scaled pressure g near the tip. As outlined in the Appendix, the near-tip
singularities for a fluid-driven crack with K =0 take the form f ∼ A (1 − ζ )2/3 and
g ∼ B (1 − ζ )−1/3 where A and B are known, related constants (Spence & Sharp 1985).
Thus we write

f (ζ ) = (1 − ζ )2/3 F (ζ ), (5.8)

g′(ζ ) = (1 − ζ )−4/3 G(ζ ), (5.9)

and solve for F and G, which are non-zero at ζ = 1 as we have extracted the behaviour
of f and g′ as ζ → 1. With F assumed to be finite at the tip the solution will then
satisfy (5.6) automatically and the singularity in pressure is dealt with exactly.

In order to avoid calculating second derivatives of the pressure we integrate (5.3)
using the boundary conditions (5.5) and (5.6) to give

−2

∫ 1

ζ

f (s) ds = ζf +
1

3
f 3 dg

dζ
. (5.10)

Writing ξ = 1 − ζ and substituting from (5.8) and (5.9), we obtain

2ξ−2/3

∫ ξ

0

s2/3F (s) ds = (1 − ξ ) F +
1

3
F 3G, (5.11)

which we solve using a Newton method.
For the Newton method the function F is approximated using a quadratic spline

through N values of F at the mid-points of equally spaced panels. The transformed
pressure gradient G is calculated from (5.4), the integrals of the spline being done
analytically. A good initial guess for the Newton iteration is F = A, the coefficient
in the near-tip asymptotic form of f , and it was found that the solution converged
within 5 iterations.

Two tests were performed to verify the accuracy of the numerical scheme. By
considering the difference between the value of F at the tip in the converged solution
and the known value A from asymptotic analysis, we can estimate the accuracy of
our numerical scheme as O(1/N) (figure 7). Spence & Sharp (1985) studied the case
of a symmetric crack fed by a constant flux of fluid with K = 0 and found that the
half-width at the origin is 1.152. Using our numerical method on this problem, with
N = 100, we find that the half-width at the origin is 1.149, which is in close agreement.

5.2. Results

Figure 8 shows the scaled half-width f (ζ ) and pressure g(ζ ) for N =100. This
solution gives g(0) ≈ 2.003 which, from (5.7), corresponds to a growth rate λ ≈ 0.124.
Having found the similarity solution, we compare with the numerical results of § 4
for Zn � 1. The dashed curve in figure 4(b) is the similarity solution, which is in
very good agreement with the time-dependent numerical results, within about 2 %
for Zn � 0.1. The dashed line in figure 3 corresponds to the theoretical prediction
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Figure 7. Logarithmic plot of the error (solid) in the tip value of F in numerical solutions
of (5.11) against the number of panels N , suggesting decay like N−1 (dashed).
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Figure 8. Plot of the similarity solutions of (5.3)–(5.6) for Zn � 1: (a) scaled half-width f (ζ )
and (b) scaled pressure g(ζ ) for N =100. The solid line is for the kernel (2.8) and the dashed
line is for the kernel (2.7).

for the relationship between Zn and Żn, and the agreement with the time-dependent
numerical results is again very good for small crack lengths. The rate determined by
fitting a straight line to the data obtained in § 4 over 10−3 � Zn � 10−1 is λ ≈ 0.128.

5.3. Symmetric crack driven by over-pressure

Using our numerical scheme we can also calculate the similarity solution for a
symmetrically propagating crack with constant source over-pressure and K = 0. The
solution is again characterized by exponential growth with growth rate λ. Figure 8
shows the rescaled crack half-width and pressure, which are the solutions to (5.3)–(5.6)
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with the symmetric kernel (2.7) in (5.4). The rate of propagation is λ=0.0757, so that
a crack that propagates symmetrically in an infinite solid grows at a slower rate than
a crack that propagates away from a traction-free boundary.

6. Late times: crack length � buoyancy length
In § 4 we saw that during the later stages of propagation, when the crack length has

greatly exceeded the buoyancy length (Zn � 1), the rate of propagation behaves like
Żn = λZ2

n, leading to a finite-time blow-up. The time-dependent calculations (figures 4,
5 and 6) show that the solution develops a head, where the elastic pressure gradient
and buoyancy are both important, and a tail, where the flow is driven primarily by
buoyancy. In this section we describe a similarity solution for the tail and match this
to a solution for the head which is closely related to the solutions obtained by Lister
(1990b) for steady buoyancy-driven propagation.

6.1. The tail region

For Zn � 1 the elastic pressure gradient is O(Z−1
n ) and hence small compared with

buoyancy except in a short region of decreasing size O(Z−1/2
n ) near the crack tip

ζ = 1 (figure 5). We derive a solution for the tail region by neglecting buoyancy in
(3.6), setting Zn = λZ2

n (from figure 3) and searching for a similarity solution such that
∂H/∂τ = 0, which gives

λ

(
H − ζ

∂H

∂ζ

)
= −1

3

∂

∂ζ
(H 3). (6.1)

This first-order differential equation can be integrated to give the family of solutions

H

λ1/2
= a + (a2 − ζ )1/2. (6.2)

These solutions have a non-zero width as ζ → 1−, which must be matched to the
head.

The constant a is determined from a boundary condition at ζ = 1− based on
an asymptotic balance of fluxes with the head. Since the head region occupies a
decreasing proportion of the total volume, the flux condition (3.8) also applies to the
limit ζ → 1− in the tail and not just to the crack tip. With this observation, we neglect
the elastic pressure gradient in (3.8) to obtain

H (1) = (3λ)1/2 , (6.3)

and deduce that a = (4/3)1/2. We will need to match to this width when we examine
the head in § 6.2.

Having obtained H , we use (3.7) to obtain

P (0) = lim
ζ→0

λ1/2

2π

∫ 1

0

k(s, ζ ) ds(
4
3

− s
)1/2

. (6.4)

By making the substitution s = ζu and noting that ζk(ζu, ζ ) = k(u, 1), we deduce that

P (0) =
λ1/2

2π

(
3

4

)1/2 ∫ ∞

0

k(u, 1) du =
(3λ)1/2

π
. (6.5)
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Figure 9. Plot of the half-width H against ζ for lengths Zn = 420, 103 and 104. The tail
shows increasing agreement with the asymptotic solution (6.6) (dashed).

The boundary condition P (0) = 1 in (3.9) then determines the propagation rate as
λ= π2/3. Thus the solution for the tail is

H =
2π

3

(
1 +

(
1 − 3ζ

4

)1/2
)

. (6.6)

We compare the asymptotic propagation rate and shape of the tail derived above
with the numerical results of § 4. Figure 3 shows that the theoretical prediction
Żn = π2Z2

n/3 agrees very well with the numerical simulation for Zn � 1. Figure 9
shows that the half-width of the tail tends towards (6.6) as the crack length Zn

increases. The rate of convergence is consistent with an O(Z−1/2
n ) correction term, as

might be expected from the length of the head.

6.2. The head region

As noted in figure 6, the head occupies a small fraction of the crack’s length so that
the time to propagate the length of the head is much shorter than the time taken
to propagate the length of the crack. This separation of time scales suggests that
the head can adjust relatively rapidly to changing conditions in the tail and thus we
should consider quasi-steady solutions in the frame of the head.

The half-width at the front of the tail was found in (6.3) to be (3λ)1/2, and the width
decreases from this value to 0 over the length of the head. If we write the scale of
the head as L, then we estimate ∂H/∂ζ as (3λ)1/2 /L. From (3.7) the elastic pressure
also scales like (3λ)1/2 /L and thus the pressure gradient scales like (3λ)1/2 /L2. If the
elastic pressure gradient and buoyancy are to balance in (3.6), then L ∼ (3λ)1/4 Z−1/2

n

and P ∼ (3λ)1/4 Z1/2
n . This dependence on Zn agrees with the observed behaviour of

Pmax and the length of the head in figure 6.
Motivated by these scalings, we define

ξ =
1 − ζ

L
, (6.7)
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Figure 10. Plot of the scaled head shapes F (ξ ) =H/ (3λ)1/2 against scaled distance from the

tip ξ = (1 − ζ ) (3λ)−1/4 Z
1/2
n , for Zn in (50, 5000). The arrow shows the direction of increasing

Zn. The dashed curve is the solution for steady propagation at K =0 found in Lister (1990b).

F (ξ ) =
H

(3λ)1/2
, (6.8)

G(ξ ) =
PL

(3λ)1/2
, (6.9)

where L = (3λ)1/4 Z−1/2
n . In the limit of large Zn, the assumption of a quasi-steady

solution yields the following set of equations:

∂F

∂ξ
=

∂

∂ξ

(
F 3

(
∂G

∂ξ
+ 1

))
, (6.10)

G = − 1

π

∫ ∞

0

∂F

∂s

1

s − ξ
ds, (6.11)

lim
ξ→0

F 2

(
1 +

∂G

∂ξ

)
= 1, (6.12)

Fξ 1/2 → 0 as ξ → 0. (6.13)

Integrating (6.10) and applying (6.12) gives

∂G

∂ξ
=

1

F 2
− 1. (6.14)

Equations (6.14), (6.11) and (6.13) are precisely those solved numerically by Lister
(1990b) to describe buoyancy-driven crack propagation at a critical stress intensity
K =0. The solution consists of a bulge near the crack tip after which the half-width
tends to F = 1 as ξ → ∞. In figure 10 the time-dependent half-width of the head
calculated in § 4 has been rescaled according to (6.7)–(6.9) and we see an approximate
and improving collapse to the solution obtained by Lister (1990b). The resolution of
the head becomes worse as Zn increases because the size of the head decreases like
Z−1/2

n and we have used a fixed grid.
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7. Discussion
We have obtained solutions in different regimes for buoyancy-driven fluid fracture

of a two-dimensional crack that propagates with constant source over-pressure
away from a traction-free boundary. The form of the solution depends on the
length of the crack relative to the buoyancy length �P/�ρg, which measures the
relative importance of the elastic pressure gradient and buoyancy. The solutions
found here have some features in common with purely pressure-driven and purely
buoyancy-driven crack propagation, but the introduction of buoyancy and over-
pressure simultaneously has led to new effects particularly when the length of the
crack exceeds the buoyancy length.

For both short cracks, when the length is less than the buoyancy length, and large
cracks, when the length is greater than the buoyancy length, the over-pressure at
the source acts to make the width of the crack grow in proportion its length. The
growth in width leads to a rapid increase in the flux, which, from lubrication theory
is proportional to the cube of the width. The driving force for the flux is dominated
either by the elastic pressure gradient for short cracks or by buoyancy for large cracks.
For the case of short cracks, we have shown that the crack growth is exponential
and obtained a similarity solution for the crack width and pressure profiles. This
solution and the predicted growth rate agree with the time-dependent numerical
simulations of the crack growth. The similarity solution is similar to the solutions
derived by Spence & Sharp (1985) for various forms of non-buoyant crack growth
in an infinite solid. For the case of large cracks we have identified a new behaviour
in which crack growth accelerates towards a finite-time blow-up with the length
increasing like (t∗ − t)−1, where t∗ is the blow-up time. The solution in this regime
develops a head-and-tail structure: in the tail the elastic pressure gradient is negligible
and the flow is buoyancy-driven; in the head the elastic pressure gradient becomes
comparable to buoyancy and acts to smooth the shock which would otherwise result
from buoyancy-driven flow in the tail. We have derived an analytic solution for
the tail, which is governed by a kinematic-wave equation. We have also derived the
asymptotic governing equations for the head, and obtained an asymptotic matching
to the tail by exploiting a quasi-steady analysis which reduces the problem to one
solved in Lister (1990b). The analytical solutions derived for large lengths also agree
well with the numerical simulations.

The solutions derived here contrast with those derived by Spence et al. (1987)
and Lister (1990b), who considered steady propagation of a buoyant liquid-filled
crack. These authors imposed a fixed flux as the boundary condition at the base
of the crack, which meant the pressure decayed like the reciprocal of the distance
from the head. The difference here is that the constant over-pressure �P leads to
a rapidly increasing width and flux. Mériaux & Jaupart (1998) obtained numerical
solutions for the width of a crack propagating with buoyancy and over-pressure
in a finite elastic plate. Their results showed that the crack widened at the base
and developed a head, with the crack growth accelerating in time. See in particular
figures 12 and 15 in Mériaux & Jaupart (1998). Our analysis has demonstrated
that these features develop primarily because of the interaction between buoyancy
and over-pressure, with the finite thickness of the solid plate playing a secondary
role.

The assumptions underlying the formulation of the problem presented here must be
re-examined as the crack accelerates towards a finite-time blow-up. Various additional
effects may start to play a role, some of which can regularize the problem. Firstly,
both the width and the rate of propagation of the crack increase so that, even though
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the crack remains long and thin (the aspect ratio scales like the ratio of over-pressure
�P and elastic modulus m), the Reynolds number increases as the crack grows.
Eventually this leads to turbulent flow in the crack and the expression relating the
flux of fluid q to the pressure gradient and width must be modified (e.g. Lister &
Kerr 1991, equations 8b and 8c). While this changes the exponent α in Żn ∼ Zα

n ,
it is still the case that α > 1, resulting in blow-up. A second consequence of the
increasing crack speed is that the tip speed eventually becomes comparable with the
Rayleigh wave speed in the solid. At this stage the assumption of elastostatics must
be abandoned and we must reformulate the problem in terms of elastodynamics, where
the kinetic energy of the solid is comparable to the strain energy of the crack. Scaling
arguments suggest that this prevents blow-up, though this remains to be confirmed by
calculation.

Three modifications may arise from the geometry of the problem. Throughout the
analysis presented here, we have assumed that the vertical extent zn of the crack is less
than the horizontal (along-strike) extent, which allows us to model the dyke as two-
dimensional. When the crack reaches a length comparable to the horizontal extent of
the crack the elastic relation (2.6) will change to reflect the three-dimensional nature
of the crack (e.g. Lister 1990a). Both lateral and vertical propagation must then be
considered. Another consideration connected to the size of the crack is the presence
of a free surface (e.g. the Earth’s surface) through which the crack may break; this
changes the kernel in (2.6) and a numerical study of this effect has been undertaken
in Mériaux & Jaupart (1998). A further consideration is the flux of fluid into the
crack, which would also blow up in finite time if the over-pressure were maintained.
In practice, however, a large flux would lead to the source being evacuated and a
reduction in over-pressure at the base of the crack. All these additional effects lead
to interesting extensions of this work and would provide further insight into the
geological problem of how magma is fed through the crust.

In conclusion, we have included buoyancy in the model of an over-pressured dyke
propagating through the Earth’s crust. The inclusion of buoyancy has led to a new
behaviour, which we have explained through asymptotic analysis of the governing
integral and partial-differential equations. We have derived new solutions governing
this regime of dyke propagation and highlighted connections to other studies. There is
a wide variety of extensions to this work which will provide interesting mathematical
problems and further insight into dyke propagation.

Appendix. Asymptotic form for f and g at ζ = 1

Near the crack tip we pose f (s) = A (1 − s)α and use

g(ζ ) = − 1

π

∫ 1

0

k(s, ζ )
df

ds
ds (A 1)

to calculate the pressure near the crack tip. Following Spence & Sharp (1985) we
write s = 1 − (1 − ζ ) u so that f = A (1 − ζ )α uα . Near the tip the kernel is dominated
by 1/ (s − ζ ) and, substituting into (A 1), we obtain

g(ζ ) ∼ (1 − ζ )α−1 αA

π
−
∫ ∞

0

uα−1

1 − u
du, (A 2)

g′(ζ ) ∼ − (1 − ζ )α−2 α(α − 1)A

π
−
∫ ∞

0

uα−1

1 − u
du. (A 3)
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By integrating the function zα−1/(1 − z) around a ‘keyhole’ contour it is easy to show
that

−
∫ ∞

0

uα−1

1 − u
du = π cot πα. (A 4)

Using these results and balancing −ζf ′ with (f 3g′)′/3 in (5.3), we obtain the following
equation governing the form of f at the crack tip:

3 = A3 (1 − ζ )3α−2 α (α − 1) cot πα. (A 5)

This gives α =2/3 and A3 = 27
√

3/2, in agreement with Spence & Sharp (1985).
For the case K �= 0 near the tip, we have f (s) ∼ K (1 − s)1/2 which gives g′(s) ∼
−K−2 (1 − s)−1 and, on integration, we obtain g(s) ∼ K−2 log (1 − s).
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